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ABSTRACT: The permeability of a membrane to solute
penetrants is well defined on the linear response level simply as
the ratio of penetrants’ flux and concentration gradient at the
membrane boundary layers. However, nonlinearities emerge in the
flux−force relation j( f) for large driving forces f, in which the
definition of permeability becomes ambiguous. Here, we study
nonequilibrium membrane permeation orchestrated by a generic
driving force using penetrant- and monomer-resolved computer
simulations of transport in a polymer network, supported by exact
solutions of the Smoluchowski (drift−diffusion) equation in the
stationary state. In the simulations, we consider the transport
across a finite polymer membrane immersed in a reservoir of
penetrants, addressing one- and two-component penetrant
systems. We calculate the f-dependent inhomogeneous steady-state density profiles, boundary layer concentrations, and fluxes of
the penetrants. The Smoluchowski approach, using solely coarse-grained equilibrium partitioning and diffusion profiles as input,
exhibits remarkable qualitative agreement with our nonequilibrium simulations, which serves for rationalization of the observations.
We discuss possible definitions of nonequilibrium, f-dependent permeability, distinguishing between “system” and “membrane”
permeabilities. In particular, we introduce the concept of dif ferential permeability as a response to f. The latter turns out to be a highly
nonmonotonic function of f for low-permeable systems, demonstrating how a differential permselectivity is substantially tunable by the
driving force beyond linear response.

■ INTRODUCTION

The permeability of polymeric membranes is a key functional
property in biology and modern applications utilizing soft
materials. Examples of polymer networks important for
selective transport in living systems are cytoskeletons, mucus,
and extracellular matrices.1−7 Synthetic polymer networks, on
the other hand, serve as indispensable building blocks in
dialysis, nanofiltration and desalination,8 drug delivery
systems9−11 or stimuli-responsive nanoreactors with applica-
tions in controllable nanocatalysis,12−24 and biomedical
diagnoses.15−19 The transport embraces nanoscale atoms to
sub-micron-scale macromolecules, such as ions, ligands,
proteins, and reactants, which we refer to as “penetrants” of
the membrane in the following. Particularly important for
applications is to utilize solute selectivity in the permeability
(“permselectivity”), as prominently found in air filtration or gas
separation25−34 and water purification.35−42

In its most basic and widely accepted definition,
permeability ( ) is defined within the linear response regime,
essentially as the ratio between the flux (j) and concentration
gradient.43−50 For this, consider the simple membrane model
as illustrated in Figure 1(a) and Fick’s type of permeation as
illustrated in Figure 1(b). Here, the membrane permeability is
defined as the proportionality constant of the flux,

≡ −
Δ

j
c

d
0

(1)

driven by the penetrant concentration difference Δc0 = c0R −
c0L between both reservoir sides of the membrane of thickness
d. In this work, we consider the number concentration (i.e., the
penetrant number divided by the volume). Based on the
standard constitutive transport equations for dense mem-
branes, which leads to the well-known solution−diffusion
model,25,26,44−59 the linear response permeability can be
written as

= Din (2)

which is the trade-off relation between the two key quantities,
and Din. [In this work, we consider = Din , which is

independent of the membrane thickness d. Some works use a
different definition, = D d/in .] The former is the partition
coefficient (or the partition ratio) ≡ c c/in 0, that is, the ratio
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of penetrant concentrations in the membrane (cin) and the
bulk reservoir (c0), while Din is the diffusion coefficient of the
penetrants in the membrane (see Figure 1(c)). Combining
Fick ’s law with the par t i t ioning , one finds

= − − = − −j D c c d D c c d( )/ ( )/in R L in 0R 0L , which relates
boundary layer and bulk concentrations as sketched in Figure
1(b).
A relatively general starting point to describe transport for

dense membranes is the Smoluchowski equation60 (or the
Fokker−Planck equation for overdamped dynamics61−64) of
penetrants in the presence of a uniform force ( f), also known
as the “drift−diffusion equation”.65 This framework extends
the classic solution−diffusion model to “inhomogeneous”
solution−diffusion models,52,66,67 where boundary layer effects
and occurring nonlinearities can be captured. In this
framework, the flux is generally described as

β= − + −
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where the thermal energy is kBT = 1/β. The first term of j is
the concentration gradient contribution (from Fick’s law, as
discussed above), the second term originates in the effective
energy landscape of the membrane system, and the last term is
due to the additional driving force. The latter generally
represents any uniform driving force other than the former two
contributions, such as external electrostatic, gravitational, and
centrifugal forces,68 or active forces as in biology.69 The
interpretation of f as an electrostatic driving force leads to the
Nernst−Plank equation for electromigration, the extension of
which can model salt transport in reverse osmosis, including
advection.70 Our considerations also include the interpretation
of f as a low-Reynolds-number drag force from a uniform flow
velocity, relevant for processes such as reverse osmosis.8,66

The potential field G(z) constitutes the membrane as a finite
energy barrier (or attractive well) in the system and originates
from the microscopic interactions between penetrants and the
membrane. We consider G(z) as an average potential field,
which can be obtained from molecular simulations by
Boltzmann-inverting the average equilibrium partitioning
profile.71−76 The equilibrium diffusivity field D(z) also
depends on the membrane and penetrant properties. Our
system comprises two local diffusivities, D(z) = D0 in the bulk
and D(z) = Din in the membrane (see eq 16). The latter
depends on the penetrant−membrane interactions and
membrane density.72−74 The corresponding drift−diffusion
scenario is depicted in Figure 1(d). Since we compare
theoretical results with implicit-solvent computer simulations
where no explicit solvent flow and drag are included (i.e., no
hydrodynamics) and permeation is dominated by interaction
potentials, the Smoluchowski equation given in eq 3 is the
appropriate coarse-grained transport equation. This enables us
to use equilibrium fields conveniently as input, which were
calculated previously.73 We resolve the reservoirs in both
approaches, the Smoluchowski theory and simulations, to also
obtain a microscopic view of concentration polarization effects
in the important boundary layer33,52,66,67 originating from the
inhomogeneous density profiles of penetrants in the nonlinear
large force regimes.
The aim of our work is to examine the behavior of transport

and permeability in the nonlinear force regime in a driven
system, by directly comparing solutions of the Smoluchowski
equation to implicit-solvent molecular dynamics simulations of
penetrants driven through a monomer-resolved polymer
network membrane in contact with large reservoirs. We thus
extend our previous theoretical work on equilibrium
permeability71−73,77 to nonequilibrium scenarios. We compare
emerging penetrant profiles and fluxes and, in particular, seek
reasonable definitions of f-dependent permeabilities in the
system out of equilibrium, in which physical quantities under
consideration reduce to equilibrium ones in the limit of f → 0.
We define “differential permeability” that substitutes for the
linear equilibrium permeability in the flux−force relation (see
the Theory section for more details). This enables us to further
investigate to what extent the force can selectively control the
permeability of one penetrant species with respect to the other
in ideal binary mixtures. We demonstrate that our theoretical
predictions agree well with the simulation results for this
nonequilibrium model membrane transport. Importantly, we
rationalize how differential permselectivity can be tuned by f,
which provides experimentalists with additional means to
better control solute transport as well as to describe the
membrane permeability and transport properties. Extensions of

Figure 1. (a) Polymer network membrane (red) of thickness d,
located at the center of a system of length L with penetrants (small
blue and green spheres). (b−d) Various scenarios of membrane
permeation in a continuum representation. (b) Fick’s type of
permeation: The penetrant flux j is generated by different bulk
reservoir concentrations of penetrants c0L (feed side) and c0R
(permeate side). (c) Solution−diffusion model with equilibrium
penetrant concentrations c0 in bulk and cin inside the membrane and
corresponding diffusion coefficients D0 and Din. (d) Smoluchowski-
type permeation in nonequilibrium: The penetrant flux j is generated
by a driving force f (any forces apart from the Fick type) acting on
penetrants, which flows from the feed side to the permeate side. G(z)
and D(z) are the position-dependent membrane potential and
diffusivity, respectively (see eqs 15 and 16).
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our framework to ionic transport and (hydrodynamic)
advection are possible, which are laid out in previous works
as cited above.

■ SIMULATION MODEL AND THEORY
Simulation Model. We perform Langevin dynamics

simulations of cross-linked, semiflexible polymer networks in
the presence of diffusive solutes (penetrants) driven by a force,
as illustrated in Figure 2. The polymers form a random

tetrafunctional network membrane in which the cross-linker
fraction is around 5%.73 The membrane is tethered at the
center of the simulation box with harmonic constraints over
the entire simulation time. The details of the membrane
morphology, simulation setup, protocols, and coarse-grained
(CG) force field parameters can be found in the Supporting
Information as well as in our previous work on equilibrium
permeability.73

Briefly, for nonbonded interactions, we consider Lennard-
Jones (LJ) potentials U ij

LJ for i, j = n or p, where n denotes the
network particles (chain monomers and cross-linkers) and p
stands for the penetrants. For the interactions between the
penetrants, we use the LJ strength βϵpp = 0.1,71−73 where the
short-range and steep repulsion of the LJ potential dictates the
interaction (steric exclusion limit). The intranetwork inter-
action ϵnn is interpreted as a measure of solvent quality71−73,78

(thus controls the network volume fraction ϕn). We use βϵnn =
0.5 in all our simulations, which yields ϕn ≈ 0.17−0.23 in
equilibrium ( f = 0), depending on βϵnp. In this polymer density
range, the permeability is strongly tunable by the network−
penetrant interaction βϵnp.

73 In this work, we consider three
different penetrant types (termed pI, pII, and pIII) for which we
use βϵ = 0.1npI

, βϵ = 0.6npII
, and βϵ = 1.2npIII

, as shown in

Table 1. We consider one-component systems as well as
mixtures (see Figure 2), namely, “mixture 1” of {pI, pIII} and
“mixture 2” of {pII, pIII}. The unit length σ is used in the
model, which is the particle diameter identical for all particles.
The system’s longitudinal length L = 305σ is fixed for all
systems under consideration. Table 1 summarizes the used
βϵnp parameters in this study and the outcomes of equilibrium

( f = 0) penetrant partitioning, diffusivity, and membrane
thickness values as determined previously.73 In fact, the
membrane thickness can vary with force. However, in our
tethered membrane systems, the mean force-dependent
membrane thickness, computed based on the full width at
half-maximum, is nearly constant (see Figure S3 in the
Supporting Information). We find one relatively large
membrane thickness increase, for the highest force ( f = 1
kBT/σ) and attractive penetrants (pIII), in which ∼10% chain
stretching is found in comparison with the equilibrium value.
We apply a constant (in both space and time) force f to all

penetrants in the z-direction (see the arrow in Figure 2) for a
sufficiently long time, ensuring a steady state where the
penetrants’ flux j(z, f) is independent of z, i.e., constant (see
the Supporting Information). For varying f, we analyze time-
averaged penetrant concentration profiles c(z, f), velocity
profiles vz(z, f) in the z-direction, and thus the mean flux j( f) =
⟨c(z, f)vz(z, f)⟩ as main quantities to describe the force-
dependent permeability and selectivity. Here ⟨X⟩ = ∫ dzX/L
denotes the average over the longitudinal space, where L is the
system length in the z-direction.

Theory. One-Dimensional Steady-State Solutions of the
Smoluchowski Equation. To connect the simulations with the
continuum transport theory, we utilize the system’s homoge-
neity in the xy-directions, which allows us to project the
observables onto one dimension (1D) along the z-direction as
illustrated in Figure 1. Since we work at low densities of short-
ranged repulsive penetrants, we can safely assume that the
penetrants behave as an ideal gas in a 1D energy landscape;
thus the governing equations are decoupled for different
penetrant species. Hence, we consider ideal penetrants in a
total potential U(z, f) = G(z) − fz in 1D with a constant force f
and a position-dependent diffusivity D(z). We recall the
steady-state Smoluchowski equation introduced in eq 3 from
which the steady-state flux j with boundary conditions c(z1) =
c1 and c(z2) = c2 yields the constant flux,63,79

=
−β β

j
c c

I z z f
e e

( , , )

U z f U z f
1

( , )
2

( , )

1 2

1 2

(4)

with

∫≡
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I z z f y
D y

( , , ) d
e

( )z

z U y f

1 2

( , )

1

2

(5)

The general solution for the z- and f-dependent penetrant
concentration leads to

Figure 2. Simulation snapshot of a polymer network membrane in the
presence of two types of diffusive penetrants (type pI in green, type
pIII in blue; type pII not included in this snapshot) driven by a uniform
force f in the z-direction (arrow). The polymers (red) are
polydisperse in length and connected by tetrafunctional cross-linkers
(yellow). The magnification circle shows the membrane structure in
detail.

Table 1. Equilibrium Properties of the System for the
Different Penetrant Types pI, pII, and pIII, Defined by the
Network−Penetrant Interaction Strength βϵnp: Equilibrium
Membrane Permeability eq, Penetrant Inner-Membrane
Diffusivity Din, Partitioning , and the Equilibrium
Membrane Thickness d/σ, Where D0 Is the Penetrant-Free
Diffusivity in the Bulk Reservoir

penetrant type βϵnp
eq/D0 Din/D0 K d/σ

pI 0.1 0.13 0.36 0.36 14.2
pII 0.6 0.40 0.26 1.54 14.6
pIII 1.2 3.30 0.13 25.4 22.4
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Flux, Fick’s Law, and Linear Response. The flux
obtained in eq 4 is a nonlinear function of f. We now briefly
discuss the nature of j and its connection to Fick’s law, the
solution−diffusion linear response, and permeability. To this
end, consider a membrane-only system with a constant
potential (ΔG) and constant diffusivity (Din) in the range of
zL ≤ z ≤ zR = zL + d (i.e., a membrane of thickness d). This
yields the total potential U(z, f) = ΔG − fz, and one finds from
eq 4 the exact expression

β=
−
−

β

β

−

−j D f
c z c z( ) ( )e

1 e

fd

fdin
L R

(7)

where c(zL) and c(zR) are the penetrant concentrations at both
boundaries. The nonlinearity of j( f) is explicitly seen.
Expressing in terms of a Taylor series for f, eq 7 reads

β

β

= −
Δ

+ { + }

− Δ + Δ

j
D c

d
D c z c z f

d
D c f c f

1
2

( ) ( )

12
( ) ( )

in
in L R

in
2 4

(8)

with the concentration difference denoted by Δc = c(zR) −
c(zL). The first term (zeroth order of f) reveals Fick’s law,
which defines the solution−diffusion equilibrium membrane
permeability (see eq 1) for f = 0, where the flux is driven by Δc
in nonequilibrium. The second term indicates the linear
relation between j and f, which is proportional to the
arithmetic mean of the boundary concentrations, [c(zL) +
c(zR)]/2. For vanishing Δc, the second term in eq 8 is the only
nonvanishing term. This implies that when the penetrant’s
inner-membrane boundary concentrations are c(zL) = c(zR) ≡
cin in equilibrium, the nonlinear flux, j in eq 7, explicitly reduces
to the linear function

β=j D c fin in (9)

In this limit, the flux inside the membrane is described by the
equilibrium quantities Din and cin as a linear response to f, and a
linear response permeability can be unambiguously defined.
Definition of a System Permeability beyond Linear

Response. By using the equilibrium membrane permeability
defined in eq 2, for which from now on we denominate

= D c c/eq
in in 0 with the explicit superscript “eq”, one finds

from eq 9

β=j c feq
0 (10)

Equation 10 provides an important j−f relation that defines
eq as the proportionality factor on the linear response level,

whereas the solution−diffusion model defines eq in the j−Δc
relation.
We now seek to extend the concept of permeability beyond

linear response in our generic model framework. In this case,
the system consists of a membrane immersed in the reference
bulk reservoir of solutes (see Figures 1(d) and 2). A steady-
state flux, j( f), measured in this system is constant throughout
space and time, regardless of being measured in the membrane
or in the bulk reservoir. We thus bring forward the system’s

total permeability, sys, defined in a general fashion as the
proportionality factor of the system’s observable j( f) via

β≡j f f c f( ) ( )sys 0 (11)

This inspires us to define a force-dependent chordal or mean
system permeability,

β
≡f

j f
c f

( )
( )

sys
0 (12)

which shares the same philosophy as an f-dependent mobility
μ( f) = v( f)/f defined as the apparent prefactor of the velocity v
with respect to the force.63,80 In addition, we consider another
quantity for permeation, defining the incremental or dif ferential
system permeability as

β
≡Δ f

c
j f

f
( )

1 d ( )
dsys

0 (13)

which is analogous to the definition of differential conductivity
in charge transport in other systems, such as semiconductors or
lattice gases.81−83 It describes the change of the flux with
respect to isothermal incremental changes of f. Both quantities,

sys and
Δ
sys, coincide in the force-free limit ( f → 0); that is,

they are independent of f (linear response). However, as we
will quantify, they can be f-dependent and different in higher
force regimes in general.
In this work, we differentiate between f( )sys and Δ f( )sys by

terming the former simply “system permeability” and the latter
explicitly “differential system permeability”. The latter is
particularly a new concept to define permeability. Note that
the defined quantities correspond to a total system
permeability, not the individual membrane permeability in
contact with a solute reservoir. Only in equilibrium, because of
the linearity of the system, the bulk permeability and the
membrane permeability, eq, can be defined individually and
simply added reciprocally to obtain the equilibrium system
permeability, sys

eq (like resistances in an electric circuit; see ref
52 or our discussion later around eq 27). Beyond linear
response, the global flux is determined by the membrane
properties, system size, and boundary conditions in a
nonadditive fashion.

Penetrant Concentration Profiles for the Membrane-
Only Case. The penetrant concentration for the above
membrane-only case leads from eq 6 to

= + Δ −
−

β

β

−
c z f c z c( , ) ( )

1 e
1 e

f z z

fdL

( )L

(14)

which reduces to the limiting expressions c(z) = c(zL) + Δc(z
− zL)/d for f → 0 and c(z) = c(zL) in the range of zL ≤ z < zR
for f → ∞ (see Figure S4 in the Supporting Information for
more details of c(z, f) for the membrane-only case).

■ RESULTS AND DISCUSSION
Single-Component Penetrant System. Equipped with

the general steady-state solutions and definitions, let us now
consider a special system of a membrane with a bulk reservoir
of penetrants (see Figure 1(d)), for which we assume a
piecewise constant form for both the potential and the
diffusivity, according to
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with zL = L/2 − d/2 and zR = L/2 + d/2. The penetrants are of
one kind (single-component), driven by a force f, and have the
same bulk concentrations at both system boundaries c(0) =
c(L) = c0. The solution c(z) conforms to the imposed
boundary condition for G(z) and D(z), which is periodic in
the z-direction with the period L.63 This enables the
comparison with the simulation results in which periodic
boundary conditions are used.
In our previous work, we have obtained G(z) from

simulations in equilibrium via β = − [ ]G z c z c( ) ln ( )/eq
0
eq

where ceq(z) and c0
eq are the penetrant’s equilibrium

concentration profile and the bulk concentration, respec-
tively.72−74 We observed that G(z) can be conveniently
mapped on a piecewise step function given in eq 15. The mean
plateau value of G(z) in the membrane, ΔG, defines our
partition ratio (see Table 1) via

Δ = −G k T lnB (17)

A similar piecewise mapping is assumed for the diffusivity
field as in eq 16, of which Din and D0 were previously studied
in equilibrium.72−76

Penetrant Concentration Profiles. It is straightforward
to obtain the penetrant concentration profile from the general
solution eq 6, reading

= − − β β− −
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The full closed-form expression of eq 18 is presented in the
Supporting Information, where the penetrant concentrations
are denoted by the following subscripts depending on the
location,
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In Figure 3, we compare c(z, f)/c0 from the simulations
(solid lines) with the theoretical prediction (eq 18, dashed
lines) for the single-component-penetrant−membrane systems.
We visualize the membrane region as red-shaded areas with
equilibrium thickness d (see Table 1 and Methods in the
Supporting Information). We notice at first glance that our
continuum-level theory based on the piecewise potential model
is overall in remarkable agreement with our particle-based CG
simulation results for the highly inhomogeneous density
profiles, for different forces and network−penetrant interaction
parameters ϵnp.
For the repulsive network−penetrant interactions with the

penetrants of type pI βϵ =( 0.1)npI
, yielding the smallest

equilibrium membrane permeability =D( / 0.13)I
eq

0 in the
chosen parameter set, the change of c(z, f) upon increasing f is
significant, as shown in Figure 3(a). Since the network−
penetrant interaction is repulsive, the global magnitude of the
penetrant’s inner-membrane concentration (cin(z, f)) is smaller
than in the reservoir bulk regions (c0L(z, f) and c0R(z, f)); thus

< 1, for small forces up to βf = 0.01/σ close to equilibrium.
As the force further increases, a dramatic inversion of c(z, f)
occurs, in which the penetrants infiltrate into the membrane
much more, eventually resulting in the increase of the system's
permeability (as discussed further below). In particular, under
the intermediate force, βf = 0.1/σ, a giant penetrant
accumulation around the left (feed) side of the membrane−
reservoir interface is observed, which even exceeds the inner
concentration cin(z, f), as depicted by the green line in Figure
3(a). This induces a rapidly decaying concentration profile
cin(z, f) that becomes extremely inhomogeneous in this
intermediate force regime, which decays even below the bulk
concentration at the right (permeate) side of the membrane.
Hence, we provide a microscopic view of concentration
polarization effects in the boundary layer.33

Figure 3. Normalized penetrant concentration profiles c(z, f)/c0 in single-component penetrant systems for different forces. The red-shaded area
depicts the membrane region with equilibrium thickness d. The time-averaged steady-state profiles from the simulation results (solid lines) and the
theoretical prediction (dashed lines) from the steady-state Smoluchowski solution (eq 18) are compared for different parameters (a) βϵ = 0.1npI

and =D/ 0.13I
eq

0 , (b) βϵ = 0.6npII
and =D/ 0.4II

eq
0 , and (c) βϵ = 1.2npIII

and =D/ 3.3III
eq

0 . The arrows depict the limiting values for the

penetrant’s inner-membrane concentration, =c c/in 0 for f → 0 (gray, see eq 19), and cin(L/2)/c0 = D0/Din for f→ ∞ (red, see eq 21). The used
parameter values are summarized in Table 1. The standard error of the time-averaged concentration profiles obtained from the simulations is
smaller than the line thickness.
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For the slightly attractive network−penetrant interactions
with the penetrants of type pII βϵ =( 0.6)npII

, yielding

=D/ 0.4II
eq

0 but still less than unity (see Figure 3(b)), the
penetrant’s interfacial accumulation around the feed side is
observed again under the intermediate f (the green line).
However, there is no dramatic inversion of cin(z, f) with respect
to the bulk concentrations as f varies. This tendency is related
to the partitioning, which is > 1 in this case. The
penetrant’s inner-membrane concentration tends to increase
as f increases and decay under the intermediate force, similar to
the results in Figure 3(a).
The above observed feed-side interfacial accumulation

implies a penetrant’s congestion due to the intrinsically low
permeability of the membrane, i.e., low Din and low . This
jamming at the entry is released by a sufficiently large force
that compensates for the penalty from the low permeability
and eventually becomes negligible under higher forces. For
example, in the case of Figure 3(a), the maximal feed-side
accumulation occurs at βf = 0.1/σ. The potential barrier height
in this case is βΔ = − ≈G ln 1. This is comparable to the
energy needed to move a penetrant over a distance of the
membrane thickness (d/σ ≈ 14) with βf = 0.1/σ, which
amounts to βfd ≈ 1.4. Thus, there occurs a large interfacial
accumulation. The interfacial accumulation is released with the
larger force βf = 1/σ, which corresponds to the membrane-
crossing energy βfd ≈ 14, which is over 10-fold larger than
βΔG.
For the more attractive network−penetrant interactions with

the penetrants of type pII I βϵ =( 1.2)npIII
yielding

=D/ 3.3III
eq

0 and now larger than unity (see Figure 3(c)),
we find a significantly different behavior of c(z, f). First, owing
to the negative energy barrier arising from the membrane,
there is no salient interfacial accumulation of the penetrants.
Second, the magnitude of cin(z, f) decreases with f, which
reduces partitioning but the flux increases. Lastly, now cin(z, f)
increases with z, thereby having a positive gradient dcin(z, f)/
dz > 0. This positive gradient signifies a flux in the z-direction
against the concentration gradient, which is often found in
biophysics, featuring active transport.84,85 Note that, however,
this feature is found only for the intermediate f, whereas the
high force regime renders rather a flat concentration profile,
cin(z, f), whose shape seldomly affects the flux. The sign change
of the concentration gradient depends on eq . We find the
threshold of this sign change at = Deq

0, which is evident
from ∝ −c z f z Dd ( , )/d ( )in

eq
0 .

The limiting expressions for the concentration c(z, f) reduce
to

=
≤ ≤l
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oo
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c
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elsewhere
0 L R

0 (19)

not only for f → 0 (see the gray arrows in Figure 3) but also
when the membrane is as permeable as the bulk (that is,

= Deq
0). In addition, we find a leading-order expression for

the penetrant concentration at the center of the membrane

= + −β β− −c L
c

D
D

( /2)
e (1 e )fd fdin

0

/2 0

in

/2

(20)

which reduces to a notable limiting expression

=
→∞

c L
c

D
D

lim
( /2)

f

in

0

0

in (21)

Therefore, the penetrant’s membrane diffusivity in equilibrium
can be estimated by measuring the nonequilibrium concen-
tration ratio under a high f ≫ kBT/d (see the red arrows in
Figure 3). This analytical result is important because it
provides information on the equilibrium inner-membrane
diffusivity Din by applying a high force f, particularly useful
to measure intrinsically extremely low Din. We observe the
onset of the qualitative agreement between eq 21 and
simulation results at f = 1 kBT/σ. This reference high force,
e.g., for a colloid particle of size 1 μm at 300 K, yields f = 1
kBT/μm ≈ 0.026 eV/μm, which amounts to an electric field of
260 V/cm per electric charge 1e. This is in the range of feasible
electric field strengths in electrophoresis experiments.86

Overall, the simple continuum-level Smoluchowski picture
agrees very well qualitatively and even semiquantitatively with
the simulation results for c(z, f). However, the theory exhibits
limitations. The quantitative deviations from the simulation
results can be attributed to the complexity arising from the
polymer network membrane. The membrane is not a simple
homogeneous medium. In stark contrast, it exhibits force- and
location-dependent (volume) responses, especially with high
forces and strong attractions. The latter features would also be
dominant with many-body effects in highly collapsed
membranes, which makes our theoretical prediction challeng-
ing. Moreover, the simulated membrane−bulk system does not
provide a piecewise constant landscape (G(z), D(z)) as ideally
imposed in the theory, leading to the largest differences
between the two approaches at the interfaces. Nevertheless,
our simple theory is qualitatively valid for the force range we
consider in this study.

f-Dependent Flux and System Permeabilities. Now we
focus on the steady-state flux j, obtained in a closed form as a
nonlinear function of f (see the Supporting Information for
derivation),

β= + −
−Ä

Ç

ÅÅÅÅÅÅÅÅÅ
i
k
jjj

y
{
zzz

É

Ö

ÑÑÑÑÑÑÑÑÑ
j D c f

D
S f1 1 ( )0 0

0
eq

1

(22)

where S( f) ≡ sinh(βfd/2)/sinh(βf L/2). This nonlinear j−f
relation is remarkably simple and important because once j( f)
is measured from experiments, it is straightforward to calculate
the intrinsic membrane permeability eq determined solely by
the known equilibrium parameters β, c0, and D0 and the system
dimension parameters d and L. Note that at =D/ 1eq

0 , the
nonlinear term in eq 22 vanishes and the flux becomes a linear
function of f.
The flux has no zeroth-order term of f (cf. eq 8), and the

leading-order term for small force f ≪ kBT/L ≪ kBT/d ≪
kBT/σ yields

β= + −
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j D c f

D d
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1 1lin
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eq

1

(23)

Another important feature of j is found in the high force
regime, where the membrane as an energy barrier becomes
unimportant. The flux simply reduces to the relation for the
homogeneous bulk solution

β=∞j D c f0 0 (24)
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implying that the nonlinear nature of the flux j lies in an
intermediate range of the force, kBT/L ≤ f ≤ kBT/d (0.003 ≲ f
≲ 0.06 kBT/σ). Otherwise, the flux in both small and large f
limits is simply a linear function of f, i.e., jlin or j∞.
In the top panels of Figure 4, the exact expression for the

flux j (red solid lines, eq 22), rescaled by D0c0, is compared
with the leading-order expressions jlin (eq 23) and j∞ (eq 24)
as well as simulation results for j = ⟨c(z)vz(z)⟩ (symbols), for
different eq. The theoretical prediction for j is in excellent
agreement with the simulation results. The nonlinearity of j is
more significant for smaller eq (Figure 4(a)). For ≫ Deq

0
the flux is almost linear, as shown in the top panels of Figure
4(b) and (c).
In fact, the steady-state flux obtained in eq 22 is the system’s

flux embracing the bulk reservoir and the membrane. Using
our definition, eq 12, we obtain the nonlinear, nonequilibrium
system permeability,
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In the limit of f → 0, we find that sys reduces to the
proportionality constant of the foregoing linear response

β=j c flin
sys
eq

0 as
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which provides a relation between the system permeability and
the membrane permeability in equilibrium. Rewritten, it
reveals a known reciprocal summation rule for the equilibrium
system permeability,52

= − + + −L L d d L d( )/2 ( )/2

sys
eq

0L
eq eq

0R
eq

(27)

with the equilibrium bulk permeability denoted by
= = D0L

eq
0R
eq

0. In addition, in the limit of f → ∞, we
find =∞ Dsys 0, where the effect of the membrane vanishes.
In the middle horizontal panels of Figure 4, the theoretical

prediction for f( )sys obtained in eq 25 is depicted by the solid
line, showing very good agreement with the simulation results
analyzed from ⟨c(z, f)vz(z, f)⟩/(c0βf) (symbols). The system
permeability, β=f j c f( ) /( )sys 0 , monotonically increases or

decreases with f from the equilibrium value ( )sys
eq to the

limiting value =∞ Dsys 0. This change of f( )sys , signifying the
nonlinearity of j, indeed mostly occurs in the range of kBT/L ≤
f ≤ kBT/d. We note that we found a closed-form solution for
the nonequilibrium differential system permeability via our
definition β=Δ f j c f( ) d /( d )sys 0 (see eq S11 in the Supporting
Information for the full closed-form expression).
In the bottom panels of Figure 4, the analytical results for
Δ f( )sys are compared with the discrete derivatives of the

simulation data for j. The major characteristics of Δ
sys, i.e., a

Figure 4. Nonequilibrium flux and permeability results for the single-component penetrant systems, presented for the three penetrant types (cf.
Table 1) of different equilibrium membrane permeabilities (a) =D/ 0.13I

eq
0 , (b) =D/ 0.4II

eq
0 , and (c) =D/ 3.3III

eq
0 . Top panels: steady-state

flux j( f)/(D0c0) from the exact solution (red solid lines, see eq 22), the leading-order expression jlin (black dashed lines, see eq 23), and j∞ (blue
dashed lines, see eq 24), compared with the simulation results (symbols). Middle panels: system permeability, β= j f c f( )/( )sys 0 , normalized by
D0, obtained from the theory (solid lines, see eq 25) and simulations (symbols). Bottom panels: differential system permeability,

β=Δ j f c fd ( )/( d )sys 0 normalized by D0, obtained from the theory and simulations. The horizontal dashed lines depict the limiting values of

sys
eq for f → 0 (see eq 26). The horizontal solid lines depict = =ΔD D/ / 1sys 0 sys 0 . The arrows in the top panels depict the critical force, f*,

derived in eq 28, which signifies the force that triggers the nonlinear j. The gray-shaded regions in the bottom panels depict the range of kBT/L ≤ f
≤ kBT/d.
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dif ferential response function of f, reveal that the nonlinear
response of the flux is a dramatically varying, nonmonotonic
function of f, particularly for less permeable systems. This
reflects that the penetrants’ response in terms of the
permeability can be largely controlled by f. The critical force
( f*), which maximizes the nonlinearity, is obtained by solving

=Δ f fd ( )/d 0sys as

* = + −
Ä

Ç
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1B
0
eq 2 (28)

approximated for d ≪ L and f ≪ kBT/d. This leading-order
expression of f*, which triggers the nonlinear flux (thus
permeability), reveals its lower bound determined by ∼kBT/L.
The corresponding f* are depicted by vertical arrows in Figure
4.
We note here that our finding of the nonmonotonic nature

of Δ f( )sys bears a resemblance to the effective diffusivity found
in ideal 1D tilted periodic potentials.87−91 It turned out that a
small free diffusion coefficient of a particle (e.g., a particle with
high friction) can accelerate its mobility in washboard-like
potentials when optimally tilted. This tendency is similar to
our finding that the maximum of the differential system
permeability is enhanced with a low equilibrium membrane
permeability, with D0 being fixed. In fact, we observe in the
range of kBT/L ≤ f ≤ kBT/d a large nonmonotonicity of

Δ f( )sys , apparently corresponding to the resonant critical
force88 in the washboard systems. This feature may be more
generally observable and important in other systems (such as
in biophysics and electrical engineering), providing a clue to
tunable permeability and selectivity by the force f in membrane
applications.
Further inspection of the nonmonotonicity of Δ f( )sys is

worthwhile in connection with the penetrant concentration
profile: from the results in Figure 4(a) and (b), it turns out
that the intermediate force βf = 0.1/σ, which induces the
notable feed-side accumulation of the penetrants (cf., Figure
3(a) and (b)), is actually high enough for approaching fully
linear flux (j∞) and thus =Δ Dsys 0. The maximal response of

Δ f( )sys arises at around βf = 0.02/σ (see the peaks at the
bottom panels of Figure 4(a) and (b)). Here, the penetrants
accumulate on the feed-side interface, which builds asymmetry
between c0L(z, f) and c0R(z, f) across the membrane toward the

permeate side, resulting in the gradually decreasing concen-
tration gradient (see the blue lines in Figure 3(a) and (b)).
This balance between the bulk concentration asymmetry and
the moderate linear gradient of the inner-membrane
concentration (close to Fick’s type permeation shown in
Figure 1(b)) is sensitively modulated by changing the force by
a small amount, which largely tunes the permeability. In this
force regime, thus the differential system permeability is
maximized, assisted by the force ( f) and the concentration
difference (Δc) in a cooperating fashion (see eq 8 and
subsequent discussions). It is interesting to observe the
opposite feature in Figure 4(c): Δ f( )sys is minimized at
around almost the same small optimal force (βf = 0.02/σ) at
which the gradual increase of cin occurs (see the blue line in
Figure 3(c)). Thus, with the higher eq and the intermediate
force, the differential system permeability is maximally
hindered by the backward flux originated from the Fick-type
mechanism dominated by the concentration gradient.

Mixture of Two-Component Penetrants. The objective
of this section is to explore the feature of f-dependent selective
permeation in a mixture of different penetrants, particularly
examining the role of f in the control of the permselectivity of
the membrane. For our hard-sphere penetrants, we expect that
the single-component Smoluchowski solutions are decoupled
and additive; therefore our theory may apply for to mixtures.
However, we cannot rule out membrane-mediated interactions
between the penetrants, which can be tested by a comparison
with the ideal Smoluchowski framework. For this, we consider
two-component mixtures of penetrant types pI, pII, and pIII. In
mixture 1 composed of {pI, pIII}, pI is repulsive to the
membrane, and pIII is strongly attractive, cf. Table 1. In mixture
2 of {pII, pIII}, pII is moderately attractive to the membrane and
pIII is strongly attractive. For all cases, the penetrant−penetrant
interaction is always repulsive (steric), as in the single-
component systems.

Penetrant Concentration Profiles. In Figure 5, the
simulation results for the penetrant concentration profiles
cI(z) and cIII(z) in each mixture are compared with the
theoretical prediction (eq 18). The results exemplify that the
decomposed Smoluchowski picture applies even for the
mixtures in which we consider only mutually repulsive
penetrants and the equilibrium membrane permeability up to

≈ D3III
eq

0. But we also observe a limitation of the theory,
especially for the highly attractive penetrant (pIII), which
deviates more from the simulation results in comparison with

Figure 5. Penetrant concentration profiles in the two-component penetrant mixtures (mixture 1 of {pI, pIII} and mixture 2 of {pII, pIII}), presented
for different forces. The red-shaded areas depict the membrane regions with equilibrium thicknesses d/σ = 16 and d/σ = 16.4 for mixtures 1 and 2,
respectively. The simulation results (solid lines) and the theoretical predictions (dashed lines) from the steady-state Smoluchowski solution (eq 18)
are compared for different parameters for mixture 1 with (a) β{ ϵ = = }D0.1, / 0.13npI I

eq
0 and (b) β{ ϵ = = }D1.2, / 3.3npIII III

eq
0 and for

mixture 2 with (c) β{ ϵ = = }D0.6, / 0.4npII II
eq

0 and (d) β{ ϵ = = }D1.2, / 3.3npIII III
eq

0 .
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the single-component cases. However, the main characteristics
of the gradient change of cin(z, f) depending on eq with the
corresponding threshold argument, = Deq

0, are still validly
captured by our theory. The discrepancies found in Figure
5(b) and (d) are expected because the polymer membrane
system involves additional complex features in membrane
responses and many-body correlations, which are not
accounted for in the theory. Nevertheless, the result shows
that our simple theory can also be utilized to characterize such
cosolute mixtures, especially with low intrinsic (equilibrium)
membrane permeabilities.
f-Dependent Flux and System Permeabilities. We show

the analytical results for the flux, the system permeability, and
the differential system permeability in Figure 6, compared with
the simulation results. The fluxes in the mixtures exhibit overall
a similar tendency to that observed in the single-component
system, in which the nonlinearity with respect to f is more
significant for intrinsically less permeable penetrants, pI. The
comparison of j demonstrates the validity of the prediction, eq
22, for the two-component mixture, which even quantitatively

matches with the simulation results, demonstrating the
additivity within the chosen parameter sets. The system
permeabilities (middle horizontal panels in Figure 6) first start
at the equilibrium values ( sys,I

eq and sys,III
eq ) for very small

forces and gradually and monotonically converge to the bulk
permeability D0 for very large forces, which is similar to that
separately found for the single-component system in Figure 4.
Therefore, we confirm that this tendency for each permeability
in the same mixture is effectively captured by our theory in a
decomposed fashion.
The predicted differential system permeabilities Δ f( )sys

(solid lines in bottom panels) also match well with the
simulation results. The observed simultaneous occurrence of
maximization and minimization of Δ f( )sys for the different
penetrant types in the mixture reflects the immanence of
selectivity that can be largely controlled by small changes of
the force, particularly in the mixture with low permeability. In
the shown range of the force, 0 < f ≲ 0.06 kBT/σ, sys and

Δ
sys

converge to D0 for large forces, which is associated with the
membrane width via kBT/L ≤ f ≤ kBT/d: The used parameter
value d ≈ 16σ corresponds to f ≈ 0.06 kBT/σ.

System Selectivity. We now consider the system
selectivity as the ratio between two system permeabilities,
α ≡ f f( )/ ( )sys sys,III sys,I . This extends the original definition
for equilibrium membrane selectivity31 to the system’s
nonequilibrium selectivity, which using eq 12 becomes the
ratio between fluxes and bulk concentrations,

α =
j c

j c

/

/sys
III 0,III

I 0,I (29)

Similarly, using eq 13, the nonequilibrium differential system
selectivity, α ≡Δ Δ Δf f f( ) ( )/ ( )sys sys,III sys,I , leads to the definition
of differential selectivity,

α =
′
′

Δ j c

j c

/

/sys
III 0,III

I 0,I (30)

with j′ ≡ dj/df. The same definition applies to mixture 2 by
replacing I with II.
In Figure 7(a) and (b), we show the system selectivity

αsys( f) (solid lines) and the differential system selectivity
α Δ f( )sys (dashed lines) for mixtures 1 and 2, respectively. The
simulation results for αsys( f), depicted by symbols, are
compared with the analytical results based on eq 29 using eq
22. For high f, both system and differential system selectivities
converge to unity, meaning that there is no selectivity and that
all penetrants flow with the limiting flux j∞ derived in eq 24,
dictated by the exceedingly high f. However, in a small f range
in which j is predominantly nonlinear, the selectivity is most
sensitive to f, which bears a potential fine-tuning of the
permselectivity by controlling f: Note that we observe a decay
of α Δ f( )sys that goes below unity at around βf = 0.01/σ in this f
range.

■ CONCLUSIONS
We have investigated permeability and selectivity for solute
transport across a polymer membrane under the action of a
generic driving force beyond Fick’s law, using penetrant- and
polymer-resolved coarse-grained simulations and analytic

Figure 6. Results for flux and permeabilities for the two-component
penetrant mixtures, for (a) mixture 1: = =D D/ 0.13, / 3.3I

eq
0 III

eq
0

and (b) mixture 2: = =D D/ 0.4, / 3.3II
eq

0 III
eq

0 . Top panels:
steady-state flux j( f)/(D0c0) from the exact solution (red and gray
solid lines, see eq 22), jlin (red and gray dashed lines), and j∞ (black
dashed lines), compared with the simulation results (symbols).
Middle panels: system permeability β= j f c f( )/( )sys 0 normalized by
D0, obtained from the theory (solid lines, see eq 25) and simulations
(symbols). Bottom panels: differential system permeability,

β=Δ j f c fd ( )/( d )sys 0 normalized by D0, obtained from the theory
(solid lines) and simulations (symbols). The horizontal dashed lines
depict the limiting values of sys

eq for f→ 0 (see eq 26). The horizontal

solid lines depict = =ΔD D/ / 1sys 0 sys 0 . The used parameter values
are summarized in Table 1. The arrows in the top panels depict the
critical force, f*, derived in eq 28, which signifies the force that
triggers the nonlinear j. The gray-shaded regions in the bottom panels
depict the range of kBT/L ≤ f ≤ kBT/d.
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solutions from the Smoluchowski “drift−diffusion” theory. We
thereby have gone beyond the linear response definition of
permeability and extended concepts and definitions of
permeability toward nonequilibrium situations. We have
presented possible definitions of a force-dependent system
permeability and permselectivity, in particular the dif ferential
permeability, by analytical solutions of the Smoluchowski
equation in the steady state, and have verified them by the
simulations. As an important consequence, we have demon-
strated that in the driven, nonlinear situation the solute
selectivity of the system can be tuned and controlled by a small
change of the external force. This force control becomes more
powerful in low-permeable systems with salient nonlinearity, in
which the range of the force is closely related to the system size
parameters.
Our study broadens the fundamental understanding of

permeability in nonequilibrium transport and provides a
foundation for developing theoretical tools to measure and
interpret the permeability in driven transport in applications,
particularly in strongly driven situations beyond linear
response. Owing to the chosen periodic boundary condition
in the longitudinal direction, our model, for instance, is feasible
for a long tube chamber consisting of periodically repeating
membranes that form a multilayer in a dilute solution. For
example, one can apply a uniform external electric field to
quantify the membrane permeability to dilute ionic solutes
using our model (i.e., eqs 18 and 22). Similar electrophoresis,
electrodialysis, and sedimentation setups are feasible for our
model. However, our framework is not restricted to the
periodic boundary condition, to which, in principle, other
boundary conditions can be applied. Therefore, applications
may further include molecular sieving, translocation, and
separation in electrophoresis,92−94 transport across a mem-
brane controlled by mechanically driven forces,69 and
(electro)dialysis,8,55,95 to name but a few.
Practical situations may involve more responsive mem-

branes, more strongly interacting solutes, and more strongly
coupled hydrodynamics, and thus may require a more
sophisticated model based on the presented ideas hereto. It
is noteworthy that the distinction between “membrane
permeability” and “system permeability” might not be

unequivocally possible anymore in nonlinear transport.
Hence, the role of system boundary conditions needs to be
elucidated in more detail for nonequilibrium situations to serve
for better interpretation. Moreover, we believe that our
approach will be useful in the study of transport in responsive
polymer feedback-controlled membranes,13 i.e., membranes that
may deform (“open/close”, even switch) locally and return
feedback to the transport under the nonequilibrium flow
conditions tuned by the inhomogeneous, force-controlled
solute density profiles.
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Figure 7. System selectivity, αsys( f), in the two-component penetrant
mixtures, for (a) mixture 1: = =D D/ 0.13, / 3.3I

eq
0 III

eq
0 and (b)

mixture 2: = =D D/ 0.4, / 3.3II
eq

0 III
eq

0 . The system selectivities
α = f f( )/ ( )sys sys,III sys,I and α = f f( )/ ( )sys sys,III sys,II (solid lines,
see eq 29) are compared with the simulation results (filled circles).
The differential system selectivities α =Δ Δ Δf f f( ) ( )/ ( )sys sys,III sys,I and

α =Δ Δ Δf f f( ) ( )/ ( )sys sys,III sys,II are depicted by the dashed line (see eq
30), compared with the simulation results (empty circles).
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